February 2021 Alan Brazil

- Part 1: Framing the magnitude of a net-zero GHG emissions policy for the world and the US
 - Example of transitioning to a 100% electric vehicles
 - Example of projected costs for the US of a 100% renewable energy grid
- Part 2: The problem with renewable energy is that it is variable across hours, days, months and years
- Part 3: Key opportunities along the path to Net-Zero

Step 1: Macro Theme

Governments Are Ramping Up Polices For "Zero-Net" Emissions of GHG To Combat Global Warming

Projected World Greenhouse Gas Emissions Under Various Policies (Temp Change vs Pre-Industrial Levels) 100 + 4.8 °C by 90 2100 80 No Action 70 60 Gtons CO2 Per Year 50 40 30 20 Path To 1.5% C <+1.5 °C by 102100 0 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

No Policy Means The World Continues to Heat Up

Major Prospective Net-Zero Policy Moves By Major Economies

	US	EU	China		
Net Zero	Net-Zero 2050	Net-Zero by 2050, reduction of 50-55% by 2030	Net Zero by 2060 and peak emissions before 2030		
	Decarbonize all sectors of economy: Transportation, power and consumer, industrial and commercial	Decarbonize all sectors of economy: Transportation, power and consumer, industrial and commercial	Decarbonize all sectors of economy: Transportation, power and consumer, industrial and commercial		
Transportation	Move to 100% EV transportation by 2050	Move to 100% EV transportation by 2050	Move to 100% EV transportation by 2060		
	Build 500,000 EV charging stations	Build 1MM EV charging stations, and 13 MM EV on the road by 2025			
	Consumer rebates/incentive to buy and produce EVs	Consumer rebates/incentive to buy and produce EVs	Consumer rebates/incentive to buy and produce EVs		
	Substantially higher fuel economy standards to pushout ICE vehicles		Focus on EV batteries with 2/3 of mega factory capacity will by in china by 2023		
			100% of natural graphite, 50 of lithium, 805 of cobalt battery supply chain		
Power Sector	100% pollution-free emissions by 2035	90% driven by renewable energy by 2050 from $15%$ today	By 2050, electricity will drive 65% of all end- use energy consumption vs 25% today		
	\$2 trillion infrastructure for clean energy over next two years				
	80% electrical power generated by renewable energy by 2035	Growing Off-shore wind from 12 Gw to 60 GW by 2030 and 300 GW by 2050			
	Build the next generation electric transmission and distribution network	Build the next generation electric transmission and distribution network	Build the next generation electric transmission and distribution network		
	Green hydrogen that is cost competitive to carbon based fuel sources	Expansion of Green Hydrogen from 500 GW of electrolysers by 2050 from 1 GW today	Expansion of Green Hydrogen		
	Development and deployment of large scale carbon capture systems	Development and deployment of large scale carbon capture systems	Development and deployment of large scale carbon capture systems		
	\$400 billion in additional energy research next 4 years				
	Grid scale battery storage at 1/10th the cost of Lithium-ion battery				

Step 2: Fundamental Economic Framework

Carbon Demand If China/India Grow To Per-Capita GDP Of Korea

EMs Also They Need to Reduce Their Dependency On Carbon Energy To Continue to Grow

							C
	Base Line 2018			Growth To Per-Capita GDP Of Korea			350%
	Per-Capita GDP (2010 USD)	GDP (\$bil 2010 USD)	Consumption of Electricity (TWh)	GDP (\$bil 2010 USD)	Consumption of Electricity (TWh)		300%
India China	2,152 8 255	2,822	1,309	37,610	17,444		250%
S Korea	8,233 28,675	1,453	563	57,651	24,555	2018	
USA	55,753	17,913	4,194			al	

Demand Would Soak Up All The Available Carbon Supply

Step 2: Fundamental Economic Framework

Without Policy Shifts, Emissions Will Continue To Grow

Step 2: Fundamental Economic Framework

The US Looks Similar And With Little Prospect For Improvement in Renewable Energy Absent Policy Shifts

Step 2: Fundamental Economic Framework

The Goal Of Transforming Transportation (EVs) Highlights The Challenge of Net-Zero

Step 2: Fundamental Economic Framework

EV Sales Needs To Grow Quickly To Get To Net-Zero By 2050, Problem Is EVs Are Too Expensive To Produce...

Step 2: Fundamental Economic Framework

Electric Vehicles Are Still Not Cost Competitive With ICE Vehicles, But When Then Are.....

Per vehicle upfront cost difference (2016\$) Electric vs. Reference Gasoline Vehicle

Per vehicle upfront cost difference (2016\$) Electric vs. Reference Diesel Vehicle

1. E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020.

Step 2: Fundamental Economic Framework

Electric Vehicles Demand Could Follow The Path of The Model-T

Price Adjusted Value of the Model-T with Todays Vehicles Suggest The Ramp To Wide Scale Adoption Is Not That Far Away

Step 2: Fundamental Economic Framework

Battery Supply Will Need To Grow Substantially While Getting Cheaper

A Giga Factory Is Huge, Think of Building Two A Year For Ten years

Step 2: Fundamental Economic Framework

Scaling Up EV Stock Means Scaling Up Infrastructure And Electrical Generation Capacity Based On RE

Step 2: Fundamental Economic Framework

Net-Zero Means Almost All Energy Will Come From Expanding RE Electricity Exponentially

2. E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020.

Step 2: Fundamental Economic Framework

The Scale of Investment Needed To Implement A Net-Zero Policy For The US is Daunting

 E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020.
BEA

3. Aurthor's calculation using \$1 billion per GW of capacity and \$500 billion of transmission infrastructure

- Part 1: Framing the magnitude of a net-zero GHG emissions policy for the world and the US
 - Example of transitioning to a 100% electric vehicles
 - Example of projected costs for the US of a 100% renewable energy grid
- Part 2: The problem with renewable energy is that it is variable across hours, days, months and years
 - Part 3: Key opportunities along the path to Net-Zero

SOM Macro Strategies Disclaimer

Copyright (c) *SOM Macro Strategies.* **2021.** All rights reserved. The information contained herein has been obtained from sources believed to be reliable, but is not necessarily complete and its accuracy cannot be guaranteed. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness, or correctness of the information and opinions contained herein. The views and the other information provided are subject to change without notice. This report has been created without regard to the specific investment objectives, financial situation, or particular needs of any specific recipient and are not to be construed as a solicitation or an offer to buy or sell any securities or related financial instruments. Past performance is not necessarily a guide to future results. Company fundamentals and earnings may be mentioned occasionally, but should not be construed as a recommendation to buy, sell, or hold the company's stock. SOM Macro Strategies accepts no liability for any damage caused by any virus transmitted by this company's emails, website, blog and Apps.